Standard Operation Measurement

Dielectric measurement by LCR

- 1. Press the main power button on the left corner of the LCR.
- 2. Set up.
 - a) Connect the test fixture¹ to the machine (Agilent 16334 A).
 - b) Insert the socket axial² into the test fixture.

3. Calibration.

- a) Press MEAS SETUP and choose <u>CORRECTION</u> to enter correction page.
- b) Use an insulating spacer to separate the two electrodes in the box holder. Move CURSOR arrow keys to the OPEN field (shown as "OPEN: OFF" or "OPEN: ON"). Press <u>MEAS OPEN</u>.
- c) During the OPEN correction measurement, <u>ABORT</u> key is used to stop an OPEN correction data measurement.
- d) After the measurement, press <u>ON</u> to perform the OPEN correction calculations on subsequent measurements (or press <u>OFF</u> not to perform the correction data)
- e) Remove the spacer and connect two electrodes with the shorting bar³. Move CURSOR to the SHORT field and press <u>MEAS SHORT</u>.
- f) After the measurement, press <u>ON</u> to perform the SHORT correction calculations on subsequent measurements (or press <u>OFF</u> not to perform the correction data).

4. Taking Single Measurements

- a) Insert the two wires⁴ into the socket axial and secure your sample between them, ensuring proper contact.
- b) Press DISPLAY to enter display page.
- c) Use CURSOR arrow keys to move the cursor to the FUNC field and choose the proper measurement function such as Cp D, Cp Q.
- d) Move the cursor to the FREQ. field and change the test frequency. The frequency range is from 20 Hz to 1 MHz.

5. Taking a Sweep of Measurements

- a) Press the MEAS SET-UP key
 - i. Use the soft keys to select LIST SET UP
 - ii. Use CURSOR arrow keys to move the cursor to the first blank line below the FREQUENCY field
 - iii. Input your desired frequencies in a column, one below the other using the unit (Hz, KHz, or MHz) from the soft keys
- b) Press the DISPLAY FORMAT key
- c) Press LIST SWEEP on the soft keys, measurements should appear
- d) To return to the regular single measurement screen, press the MEAS DISPLAY key
- 6. After the measurement, turn off the main power and remove the holder.

Agilent 16334 A

Connection Point

1. Test fixture

2. Socket axial

3. Shorting bar

4. Wires

<u>Symbol</u>	Parameter Name	Equation	Definition	Notes
Z	Impedance	Z=R+jX Z=V/I		
R	Resistance	R=Zcos0	Resistance is the real part of the impedance	
X	Reactance	X=Zsin0	Reactance is the imaginary part of the impedance	
Y	Admittance	Y=G+jB Y=1/Z		
G	Conductance	G=1/R	Conductance is the real part of the admittance	
В	Susceptance	B=1/X	Susceptance is the imaginary part of the admittance	
С	Capacitance	$C = \boldsymbol{\varepsilon}_{r} \boldsymbol{\varepsilon}_{o} (A/d)$	capacitance is the ability of a body to hold an electrical charge	$\boldsymbol{\varepsilon}_{\mathbf{r}} = \mathbf{C}/[\boldsymbol{\varepsilon}_{o} (\mathbf{A}/\mathbf{d})]$ $\mathbf{P} = \boldsymbol{\varepsilon}_{o} (\boldsymbol{\varepsilon}_{\mathbf{r}} - 1) \mathbf{E}$
L	Inductance	v(t)=-L(di/dt)	change in the current flow that induces a voltage that opposes the change in current	
D	Dissipation Factor	D=1/Q	(Loss Tangent)	
Q	Quality Factor	$Q = \omega^{*}(EnergyStored/PowerLoss)$ $Q = X/R $ $Q = tan \phi $	compares the frequency a system oscillates to the rate it dissipates energy	
φ	Phase Angle		The angle the voltage sine curve leads or lags the current sine curve	
Θ	Phasor Angle	θ=ωt		